Unit One: Prerequisites to Calculus: Ch. 1 (This unit is done remotely/online as a review)

Big Ideas: Lines, Functions, Exponential Functions, Logarithmic Functions and Trigonometric Functions

Topics	Assessments	Standards(All from College
		Board)
 Lines a) Slopes b) 3 forms c) Parallel and Perp. Functions a) Domain, Range b) Transformations c) Even, Odd and Symmetry d) Piecewise e) Composite Exponential Functions a) Euler's b) Growth and Decay (Exclude Unit 1.4 - Parametric functions) Logarithmic Functions	 Assignments are suggested for review but not taken for a grade for each section in Unit 1 (excluding 1.4). Unit 1 test (Completed remotely and/or online) 	Board) I. Functions, Graphs, and Limits a)Analysis of graphs.

Unit Two: Limits and Continuity: Ch. 2 (19 Days)

Big Ideas: Average vs. Instantaneous Rates, Limits, Continuity, Rates of change

Topics	Assessments	Standards (CB)
 Topics 1. Average vs. Instantaneous velocity a) Secant vs. Tangent slope b) Connect to limit def. of tangent 2. Definition of a limit a) Graphical, numerical and algebraic b) Properties c) Limits involving infinity 1. Vertical and Horiz. asymptotes 2. End Behavior models 3. Continuity a) at a point and properties b) Proving continues c) Types and identify d) Intermediate Value Theorem e) Squeeze Theorem 4. Rates of Change a) Slope of a curve (limit def.) b) Normal Lines 	 Homework is assigned for each section in Unit 2. 4 worksheets on limits, continuity, slope of a curve and IVT are given. 2-3 quizzes (limits, continuity and slope definition) are generally given to check understanding. AP Personal Progress Checks (PPC) Unit 1 Unit 2 test (Free Response and MC) 	Standards (CB)Limits of functions (including one- sided limits)a) An intuitive understanding of the limiting process.b) Calculating limits using Algebra c) Estimating limits from graphs or tables of dataAsymptotic and unbounded behavior a) Understanding asymptotes in terms of graphical behavior b) Describing asymptotic behavior in terms of limits involving infinity c) Comparing relative magnitudes of functions and their rates of change. Continuity as a property of functions a) An intuitive understanding of
		c) Geometric understanding of graphs of cont. functions Slope of a curve at a point

Unit Three: Derivatives: Ch. (13 Days)

Big Ideas: Definition of Derivative, Differentiability, Rules for diff., Velocity and other rates, Der. of Trig.

Topics	Assessments	Standards (CB)
	1. Homework is assigned for each section in Unit	Derivatives
1. Definition of Derivative	3. Handout for Rules given for extra pract.	a) Concept of the derivative
a) Notation	2. 3 quizzes (Definition, rules and rates) are	b) Derivative presented graphically,
b) Graphical, numerical and algebraic	generally given to check understanding.	numerically, and analytically.
c) Instantaneous rate of change	3. Firecracker Frank project with Speed kills	c) Derivative interpreted as an
d) Relationship between f and f'	handout.	instantaneous rate of change.
2. Differentiability	Unit 3 test (Free Response and MC)	d) Derivative defined as the limit of
 a) types and where it fails 	Connecting f and f' activity (We belong	the difference quotient.
b) Local linearity	together)	e) Relationship between
c) Intermediate Value Theorem	5. Unit 2 AP PPC	differentiability and continuity.
3. Rules for differentiation		
a) power, sum, diff, product, quotient		Derivative at a point
b) second and higher order derivatives		a) Slope of a curve at a point.
Velocity and other rates		Examples are emphasized, including
 a) displacement, ave. velocity, inst. 		points at which there are vertical
velocity, acceleration, ave. accel.,		tangents and points at which there
(jerk is optional)		are no tangents.
5. Derivative of trig functions		b) Tangent line to a curve at a point
6. L'Hopitals rule		and local linear approximation.
7. Derivatives on calculator		c) Instantaneous rate of change as
		the limit of average rate of change.
		d) Approximate rate of change from
		graphs and tables of values.
		Equations involving derivatives.
		Verbal descriptions are translated
		into equations involving derivatives
		and vice versa.

AP Calculus Curriculum Map [2023]

L'Hospital's Rule, including its use in
determining limits and convergence
of improper integrals and series-

Unit Four: More Derivative types (Ch. 4) (13 Days)

Big Ideas: Chain Rule, Implicit Diff., Der. of Inverse Trig., Der. of Exp. and Log Functions

Topics	Assessments	Standards
1. Chain Rule (Derivative of Composite	1. Homework is assigned for each section in	Computation of derivatives
functions)	Unit 4. Handout for Chain Rule and Implicit.	1.Chain rule and implicit
a. Outside-Inside Rule	2. 1-2 quizzes (Chain and Implicit) are	differentiation.
b. Repeated use of chain rule	generally given to check understanding.	2. Knowledge of derivatives of basic
c. Power chain rule		functions, including power,
	3. Unit 4 test (Free Response and MC)	exponential, logarithmic,
2. Implicit Differentiation		trigonometric, and inverse
a. Process	4. Unit 3 AP PPC	trigonometric functions.
b. Higher order derivatives using		3. Use of implicit differentiation to
implicit differentiation		find the derivative of an inverse
3. Derivatives of Inverse Trigonometric		function
Functions		
4. Derivatives of Exponential and		
Logarithmic Functions		

Unit Five: Applications of Derivatives: Ch. 5.1-5.3 (15 Days)

Big Ideas: Extreme Values, Mean Value Theorem, Connecting f and f

Topics	Assessments	Standards
 Extreme Values of functions a) Absolute and Relative Extrema b) Extreme Value Theorem 2. Mean Value Theorem a) Physical interpretation 	 Homework is assigned for each section in Unit 5.1-5.3. Handout for Extrema and Connecting f and f' activity. 	Derivative as a function a) Corresponding characteristics of graphs of f and f.

AP Calculus Curriculum Map [2023]

b) Increasing and Decreasing functions	2. 1-2 quizzes (Extreme Values) are	b) Relationship between the
 Connecting f and f' a) First derivative test 	generally given to check understanding.	increasing and decreasing behavior of f and the sign of f.
b) Concavity and f" c) Points of inflection	3 Unit 5 test (Free Response and MC)	c) The Mean Value Theorem and its geometric interpretation
d) Second derivative test	s. one s test (rice response and me)	d) Equations involving derivatives.
e) using f' and f" to graph f	4. Unit 4 AP PPC	Verbal descriptions are translated
		into equations involving derivatives and vice versa.
		Second derivatives
		a) Corresponding characteristics of the graphs of f f, and f.
		b) Relationship between the
		concavity of f and the sign of f. c)Points of inflection as places where concavity changes.
		Applications of derivatives
		a) Analysis of curves, including the
		notions of monotonicity and
		concavity
		(global) and relative (local) extrema
		c) Interpretation of the derivative as
		a rate of change in varied applied
		contexts, including velocity, speed,
		and acceleration

- End of 1st Semester

Unit Six: Modeling and Related Rates : Ch. 5.4-5.6 (15 Days)

Big Ideas: Modeling and Optimization, Linearization, Related Rates

Topics	Assessments	Standards
1. Modeling and Optimization		Applications of derivatives
a) Max and Min Problems (Extrema)	1. Homework is assigned for each section in Unit	a) Optimization, both absolute
2. Linearization	5.4-5.6. Handout for each topic is given.	(global) and relative (local) extrema.
a) Linear approx.	2. Design the best can project (Ecobrew)	b) Modeling rates of change,
3. Related Rates	3. 1-2 quizzes (Optimization and Related rates)	including related rates problems-
a) application problems	are generally given to check understanding.	c)Interpretation of the derivative as
		a rate of change in varied applied
	4. Unit 5.4-5.6 test (Free Response and MC)	contexts, including velocity, speed,
	5. Unit 5 AP PPC	and acceleration.

Unit Seven: The Definite Integral: Ch. 6 (15 Days)

Big Ideas: Finite Sums, the Definite integral and anti-derivatives, Fundamental Theorem, Trap. Rule

Topics	Assessments	Standards
1. Estimating with finite sums	1. Homework is assigned for each section in	Integrals
a) LRAM, RRAM AND MRAM	Unit 6. Handout on Ram and definite	Interpretations and properties of
Definite Integral and anti-derivatives	integrals.	definite integrals
a) Riemann sums and Riemann		a) Definite integral as a limit of
notation	2. 1-2 quizzes (Ram and Integration)	Riemann sums.
b) Terminology and notation	are generally given to check understanding.	
c) Area under the curve		Definite integral of the rate of change
1. above, below, constant, geometry	4. Unit 6 test (Free Response and MC)	of a quantity over an interval
d) Integrals on calculator	5. Unit 6 AP PPC	interpreted as the change of the
e) Discontinuous intregrals		quantity over the interval:
3. Fundamental Theorem of Calculus		
4. Trapezoidal Rule		

a)	Basic properties of definite
int	tegrals (examples include additivity
an	រd linearity).
	undersentel Theory of Coloulus
Fu al	Indamental Theorem of Calculus
	ose of the Fundamental mediem
(i)	Use of the Fundamental Theorem
to	prepresent a particular
an	itiderivative, and the analytical and
gra	aphical analysis of functions so
de	efined.
Те	echniques of antidif ferentiation
a)	Antiderivatives following directly
fro	om derivatives of basic functions
Nu	umerical approximations to definite
int	tegrals. Use of Riemann sums (using
let	ft, right, and midpoint evaluation
po	pints) and trapezoidal sums to
ap	proximate definite integrals of
fu	nctions represented algebraically,
gra	aphically, and by tables of values.

Unit Eight: Differential Equations and Mathematical Modeling : Ch. 7.1, 7.2 and 7.4 (15 days)

Big Ideas: Slope Fields, Initial Conditions, Integration by Substitution,

Topics	Assessments	Standards
1. Initial Conditions and anti-derivatives		Applications of antidif ferentiation
a) Indefinite integrals	1. Homework is assigned for each section in Unit	a) Finding specific antiderivatives
b) constant of integration	7.1, 7.2. Handout is given for slope fields,	using initial conditions, including
c) rules for indef. integrals	integration by substitution.	applications to motion along a line.
d)properties and application		b) Solving separable differential
2. Slope fields	2. 1-2 quizzes (slope fields, subst.)	equations and using them in
3. Integration by substitutiona) changing bounds for def. integrals	are generally given to check understanding.	modeling (including the study of the equation y = ky and exponential
b) separable diff. equations	3. Unit 7 test (Free Response and MC)	growth).
	4. Unit 7 AP PPC	
		Applications of integrals.
		Appropriate integrals are used in a
		variety of applications to model
		physical, biological, or economic
		situations.

Unit Nine: Application of Definite Integrals : Ch. 8.1-8.3 (15 Days)

Big Ideas: Integral as Net Change, Areas in the plane, Volumes

Topics	Assessments	Standards
1. Integral as Net Change	1. Homework is assigned for each section in Unit	Applications of integrals.
a)Linear motion	8.1-8.3. Handout is given for Area and volume	Appropriate integrals are used in a
b) Total distance traveled		variety of applications to model
2. Areas in the plane	1-2 quizzes (area and volume)	physical, biological, or economic
a) Area between two curves	are generally given to check understanding.	situations.
b) calculate intersecting points		Although only a sampling of
c) with respect to y	3. Unit 8 test (Free Response and MC)	applications can be included in any
d) using geometry	4. Unit 8 AP PPC	specific course, students should be
3. Volumes		able to adapt their knowledge and
a) Known cross sections		techniques to solve other similar
b) Disk and Washer method		application problems. Whatever
Integration with complete the square		applications are chosen, the
and long division		emphasis is on using the method of
		setting up an approximating
		Riemann sum and representing its
		limit as a definite integral. To provide
		a common foundation, specific
		applications should include finding
		the area of a region (including a
		region bounded by polar curves), the
		volume of a solid with known cross
		sections, the average value of a
		function, the distance traveled by a
		particle along a line, the length of a
		curve (including a curve given in
		parametric form), and accumulated
		change from a rate of change.

End of 3rd Quarter

4th Quarter - AP practice exams both as practice and as in-class exams are given until the AP exam in early May. It takes about 6-8 days for each practice exam whether given as practice or an actual test. **Free Response Exams are now available on AP Classroom and can be assigned digitally.** The goal is to complete 2 AP exams and various problems in the time allotted from the last unit to the AP exam date. Once allowed by the College Board, we go over the actual AP exam in class after the exam date. This typically leads us to the end of the course.

Post Exam Topics: Integration by Parts and Shell Method

Topics	Assessment	Standards
1. Integration by Parts	 homework assigned for each topic 	BC college board topics
2. Shell Method	2. Quiz over the two topics	Antiderivatives by substitution of variables (including change of limits for definite integrals), parts, and simple partial fractions (nonrepeating linear factors only).